

$$\frac{d}{dx}(u \pm v) = \frac{du}{dx} \pm \frac{dv}{dx}$$

Examples)
1.)
$$\frac{d}{dx}(x^2) =$$
2.) $\frac{d}{dx}(5x^4)$
3.) $y = x^4 + x^2 - x^{-1}$
4.) $f(x) = \sqrt{x}$
 $y' =$
5.) $f(x) = \frac{x^2 - 3x}{x}$
6.) $y = \frac{5}{x^2}$
 $f'(x) =$
 $y' =$

The Product Rule $\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$ Ex 1) $f(x) = (4x^2)(3x^5)$ f'(x) =Ex 2) $f(x) = (x^2+1)(2x+4)$ f'(x) =Ex 3) $y = (x^2 + x)^2$ y' =

Ex 3)
$$y = \frac{1+x^2}{1-x^2}$$
 $\frac{dy}{dx} =$
Ex 4) $y = \frac{4x+1}{x^2-5}$ $\frac{dy}{dx}\Big|_{x=1}$
Ex 5) $f(x) = (x+1)(\frac{x^2+2}{x-1})$

Higher Order Derivatives

If the derivative f' of a function f is itself differentiable, then the derivative of f' is denoted by f", called the <u>second derivative</u>. If the result is differentiable, we can continue!

Ex 1) Find all the derivatives of:

$$f(x) = 3x^{4} - 2x^{3} + x^{2} - 4x + 2$$
Ex 2) Find $\frac{d^{2}y}{dx^{2}}$ if $y = 7x^{3} - 5x^{2} + x$

Ex 3) Find
$$f''(1)$$
 if $f(x) = \sqrt{x} - \frac{1}{x^2}$

Rule Check:

Suppose f and g are functions of x, and f and g are differentiable at x = 0, if f(0) = 5, f'(0) = -3, g(0) = -1, and g'(0) = 2.

.

Evaluate the following:

1)
$$\frac{d}{dx}(fg) =$$

2) $\frac{d}{dx}\left(\frac{f}{g}\right) =$
3) $\frac{d}{dx}(7f - 2g)$

The Chain Rule

- until now, we have been only taking the derivative of powers of x. This rule will allow us to take the derivative of any differentiable function raised to a power.

$$\frac{d}{dx}u^n = n \cdot u^{n-1} \cdot \frac{du}{dx}$$

Note: *u* = any differentiable function *n* = any real number

Ex) $y = (4x-1)^2$ u = 4x-1 n = 2 $y' = 2(4x-1)^7(4) = 8(4x-1)$

Ex)
$$y = (x^2 + 5x)^{11}$$
 $u = x^2 + 5x$ $n = 11$
y' =

Ex)
$$y = \sqrt{2x - 1}$$
 Find y'
Ex) $f(x) = (x + 3)^2 (x - 1)^3$ Find $f'(x)$
Ex) $y = \frac{(x - 3)^4}{x^2 + 2x}$ Find y'

* Chain Rule Check

Х	f(x)	f '(x)	g(x)	g '(x)
3	5	-2	5	7
5	3	-1	12	4

a) Find F'(3) where F(x) = f(g(x))

b) Find
$$G'(3)$$
 where $G(x) = g(f(x))$

c) Find G'(5) where $G(x) = (g(x))^2 + f(x)g(x)$

$$Ex \ 1$$
) $y = \sin x$
 $Ex \ 2$) $y = 6 \cot x$
 $y' =$
 $y' =$
 $Ex \ 3$) $y = \tan(2x)$
 $Ex \ 4$) $y = \cos(x^2 - 5)$
 $y' =$
 $y' =$
 $Ex \ 5$) $y = x^2 \sin x$
 $Ex \ 6$) $y = \frac{\cos x}{\sin x + 1}$
 $y' =$
 $y' =$

